Медичні терміни: А Б В Г Д Е Є Ж З І Ї Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ю Я

Статистика




На порталі: 3
З них гостей: 3
І користувачів: 0
Ризики, пов'язані з ГМО продуктами харчування

Ризики, пов'язані з ГМО продуктами харчування

Ризик для здоров'я
Встановити 100% безпеку харчових продуктів науково неможливо. Втім, аргументувати безпечність генетично-модифікованої їжі тільки на принципі Argumentum ad Ignorantiam було б помилково. Тому генетично-модифіковані продукти проходять докладні аналізи, що базуються на сучасних наукових знаннях.

Харчові алергії, що можуть бути пов'язані з ГМО
Одним з можливих ризиків вживання генетично модифікованої їжі розглядається її потенційна алергенність. Коли новий ген вбудовують в геном рослини, то кінцевим результатом є синтез в рослині нового білка, який може бути новим в дієті. Через це ми не можем визначити аллергенність продукту, базуючись на минулому досвіді. Натомість, кожен генно-модифікований сорт, перш ніж потрапить до споживача, проходить процедуру оцінки його алергійного потенціалу. Тести передбачають оцінку білкової послідовності з відомими алергенами, стабільність білка під час переварювання, тести за допомогою крові від чутливих до алергену індивідуумів, тести на тваринах.
Якщо продукт в процесі розробки демонструє алергійні властивості, запит на комерціалізацію може бути відкликаний. Наприклад, в 1996 році компанія Pioneer Hi-Bred розробляла кормову сою з підвищеним вмістом амінокиcлоти метіоніну. Для цього використали ген бразільського горіху, який, як згодом виявилось, демонстрував алергійні якості. Розробка продукту припинена, оскільки існував ризик, що кормова соя може випадково потрапити на стіл до споживача.
Станом на 2010 рік інших прикладів аллергенності трансгенних продуктів не спостерігалось. Сучасний аналіз генно-модифікованих продуктів на алергенність значно докладніший, ніж аналіз будь-яких інших продуктів на алергенність. Крім того, постійний моніторинг генно-модифікованих продуктів надає змогу відслідкувати їхню присутність у випадку, коли подібна алергія раптом буде встановлена.

Токсичність, що може бути пов'язана з ГМО
Окремі продукти генів, що переносяться в організм генно-інженерними методами, можуть демонструвати токсичні властивості. В 1999 році опублікована стаття Арпада Пуштаї (Árpád Pusztai) щодо токсичності генно-модифікованої картоплі для щурів. В картоплю було вбудовано ген лектину з підсніжника Galanthus nivalis з метою підвищити стійкість картоплі до нематоди. Згодовування картоплі щурам продемонструвало токсичний ефект генно-модифікованого сорту. Опублікуванню даних передував гучний скандал, оскільки результати були представлені до експертної оцінки науковцями. Запропоноване Пуштаї пояснення, що менше лектин, а скоріш спосіб перенесення гену, викликав токсичний ефект, не підтримане більшістю науковців, оскільки даних, представлених у статті, недостатньо для формулювання саме таких висновків. Розробка трансгенної картоплі з геном лектину припинена.
Російська дослідниця Ірина Єрмакова провела дослідження на щурах, яке, на її думку, демонструє патологічний вплив генно-модифікованої сої на репродуктивні якості тварин. Оскільки дані широко дискутувались в світовій пресі, не будучи опублікованими в реферованих журналах, наукова спільнота розглянула результати докладніше. Огляд шести незалежних світових експертів встановив, що: результати І. Єрмакової суперечать стандартизованим результатам інших дослідників, що працювали з тим самим сортом сої і не виявили токсичного впливу на організм .
До 2007 року опубліковано 270 наукових робіт, які демонструють безпеку генно-модифікованих продуктів.

Горизонтальне перенесення генів від ГМО до споживача
Розвиток технології генної модифікації і вживання генетично-модифікованої їжі стимулювали ряд експериментів з вивчення долі вжитої з продуктами ДНК в травній системі. Середньостатистична людина разом з продуктами вживає 0,1 — 1 г ДНК, незалежно від дієти. В процесі травлення 95% ДНК деградує до окремих нуклеотидів, 5% у вигляді шматків довжиною від 100 до 400 нуклеотидів доходять до кишечника. Оскільки в процесі виготовлення генно-модифікованих організмів широко використовують конститутивні промотори, які здатні включати гени також в тваринних клітинах, то залишається ризик, що шматки ДНК, які кодують промотори вбудуються в геном людини і активують сплячі гени.
Досліди на мишах демонструють, що непереварена ДНК будь-якої їжі здатна проникати в кров, поступати в печінку і навіть проникати через плацентарний бар'єр. Але жодного випадку вбудовування шматків чужорідної ДНК в геном потомства не спостерігалось.

Ризик для довкілля
Однією з проблем, пов'язаних з трансгенними рослинами є потенційний вплив на ряд екосистем.
Міграція генів завдяки переопиленню
Трансгени мають потенціал для впливу на довкілля, якщо вони збільшать присутність і збережуться в природних популяціях. Ці проблеми так само стосуються і конвенційної селекції. Необхідно враховувати такі фактори ризику:
1. Чи здатні трансгенні рослини рости за межами посівної площі?
2. Чи може трансгенна рослина передати свої гени місцевим диким видам і чи буде гібридне потомство родючим?
3. Чи впровадження трансгенів мають селективні переваги перед дикими рослинами у дикій природі?
Багато одомашнених рослин можуть перехрещуватись з дикими родичами, коли вони ростуть у безпосередній близькості, таким чином гени культивованих рослин можуть бути передані гібридам. Це стосується як трансгенних рослин, так і сортів ковенційної селекції, оскільки в будь-якому випадку мова йде гени, які можуть мати негативні наслідки для екосистеми після вивільнення у дику природу. Це зазвичай не викликає серйозну стурбованість, незважаючи на побоювання з приводу 'мутантів-супербур'янів', які б могли захаращити місцеву дику природу. Хоча гібриди між одомашненими і дикими рослинами далеко не рідкість, в більшості випадків ці гібриди не є родючим завдяки поліплоїдії і не зберігаються в довкіллі довгий час після того, як одомашнений сорт рослин вилучається з культивування. Однак, це не виключає можливості негативного впливу.
У деяких випадках, пилок з одомашнених рослин може поширюватися на багато кілометрів з вітром і запліднювати інші рослини. Це може ускладнити оцінку потенційного збитку від перехрещування, оскільки потенційні гібриди розташовані далеко від дослідних полів. Для вирішення цієї проблеми пропонуються системи, призначені для запобігання передачі трансгенів, наприклад, термінаторні технології та методи генетичної трансформації виключно хлоропластів так, щоб пилок не був трансгенний. Що стосується першого напрямку термінаторної технології, то існують передумови для несправедливого використання технологіії, яка може сприяти залежності бідних фермерів від виробників. Тоді як генетична трансформація хлоропластів не має такий особливостей, натомість має технічні обмеження, які ще необхідно подолати. На сьогодні ще нема жодного комерціалізованого сорту трансгенних рослин з вбудованою системою запобігання переопилення.
Є, принаймні, три можливі шляхи, що можуть призвести до вивільнення трансгенів:
1. гібридизації з нетрансгенними сільськогосподарськими культурами того ж виду та сорту;
2. гібридизація з дикими рослинами одного й того ж виду;
3. гібридизація з дикими рослинами близькоспоріднених видів, як правило, одного і того ж роду.
Однак, треба задовольнити ряд умов, щоб такі гібриди утворились:
1. трансгенні рослини повинні культивуватись досить близько до диких видів, щоб пилок міг фізично їх досягнути;
2. дикі і трансгенні рослини повинні цвісти одночасно;
3. дикі і трансгенні рослини повинні бути генетично сумісні.
Для того, щоб нащадки збереглись, вони повинні були життєздатними і плідними, а також містити перенесений ген.
Дослідження показують, що вивільнення трансгенних рослин найімовірніше може трапитись шляхом гібридизації з дикими рослинами споріднених видів.
1. Відомо, що деякі сільськогосподарські культури здатні схрещуватися з дикими предками.
2. При цьому розуміється, як базовий принцип популяційної генетики, що розповсюдження трансгенів в дикій популяції буде безпосередньо пов'язане з ступінню пристосованості разом зі швидкістю притоку генів в популяцію. Вигідні гени будуть швидко поширюватися, нейтральні гени будуть розповсюджуватися шляхом генетичного дрейфу, невигідні гени будуть розповсюджуватись лише у випадку постійного притоку.
3. Екологічний вплив трансгенів не відомий, але загальноприйнятим є те, що тільки гени, які покращують ступінь пристосування до абіотичних факторів, дадуть гібридним рослинам достатню перевагу, щоб стати агресивним бур'яном. Абіотичні фактори, такі як клімат, мінеральні солі або температура — є неживою частиною екосистеми. Гени, які поліпшують пристосування до біотичних факторів, можуть порушувати (іноді дуже чутливий) баланс екосистеми. Так, наприклад, дикі рослини, які отримали ген стійкості до комах від трансгенної рослини, можуть стати стійкішими до одного зі своїх природних шкідників. Це могло б сприяти збільшенню присутності цієї рослини, а разом з тим може зменшитись кількість тварин, що перебувають вище в харчовому ланцюзі від шкідника, як джерела їжі. Тим не менше, точні наслідки трансгенів з селективною перевагою в природному середовищі майже неможливо надійно передбачити.

Загроза біологічному різноманіттю
ГМО становлять ризик для біорізноманіття (у тому числі генетичного), оскільки вони взаємодіють у природі із усім живим, що їх оточує. Вчені визначили декілька проблемних сфер – появу нових шкідників, бур’янів, генетичного забруднення, перехресного запилення генетично модифікованих культур і звичайних, появу нових вірусів та ін.

Експериментальні дані екологічних досліджень
Станом на 2007 рік у світі вирощувалось 14 млн гектарів трансгенного бавовнику, з них 3,8 млн га в Китаї. Бавовникова совка один з найсерйозніших шкідників, личинка якого вражає не тільки бавовник, а й злаки, овочі і інші культурні рослини. В Азії вона за сезон дає чотири покоління. Пшениця — основна рослина-хазяїн для першого покоління совки, а бавовник, соя, арахіс і овочеві — це хазяї для наступних трьох поколінь. Основним агротехнічним заходом боротьби було інтенсивна, до 8ми разів за сезон, обробка полів інсектицидами. Втім це привело до появи стійкої до інсектицидів совки і, як результат, спалах кількості совки в 1992 році і, відповідно, збільшення інтенсивності обробки інсектицидами.
В 1997 році на ринок випущений перший трансгенний бавовник, що містить ген Bt-токсину, культивування якого призвело до збільшення врожайності і різкого зменшення використання інсектицидів до двох поливів за сезон. Результати десятирічного моніторингу екологічної ситуації свідчать, що з 1997 року щільність враження личинкою совки знижується і продовжує знижуватись. Крім того, популяція совки зменшилась не тільки на трансгенному бавовнику, а й на інших культурних рослинах. Це пояснюється тим, що бавовник, як рослина-хазяїн для другої сезонної хвилі розмноження совки, суттєво редукує цю другу хвилю, що відповідно одразу відображається на чисельності особин третій і четвертій хвилі.
Одночасно зі зменшенням совки на бавовникових полях дещо збільшилась кількість іншого шкідника — клопів з сімейства Miridae. Це пояснюється зменшеною інтенсивністю застосування інсектицидів. Все це створило сприятливі умови для розвитку цього шкідника .

Українське законодавство
В Україні допуск ГМ продуктів регулюють:
Закон «Про державну систему біобезпеки при створенні, випробуванні, транспортуванні та використанні генетично модифікованих організмів» 
Постанова від 18 лютого 2009 р. N 114 про «Порядок державної реєстрації генетично модифікованих організмів джерел харчових продуктів, а також харчових продуктів, косметичних і лікарських засобів, які містять такі організми або отримані з їхнім використанням» .
Закон «Про захист прав споживачів» (Стаття 15. п 6) «Інформація про продукцію повинна містити: позначку про наявність або відсутність у складі продуктів харчування генетично модифікованих компонентів» . Таким чином, маркуванню підлягають не тільки продукти отримані з ГМО, а також харчові добавки, отримані за допомогою ГМО. Ні в Європейське, ні законодавство Сполучених Штатів не передбачає маркування харчових добавок, отриманих за допомогою генно-модифікованих мікроорганзмів. Крім того, Україна стала першою державою у світі, яка зобов'язала виробників та імпортерів харчових продуктів вказувати позначення «без ГМО» в маркуванні всіх, без винятку, харчових продуктів, навіть тих, у яких ГМО не може бути ні теоретично, ні практично.
3 жовтня 2012 року Кабінет Міністрів України схвалив законопроект, який дозволяє не маркувати продукцію, яка не містить ГМО.


Категорія: Біоетика, біобезпека | Переглядів: 3963 | Рейтинг: 0.0/0
Поділіться статтею з іншими:

Акушерство Алергологія Анатомія людини Андрологія
Анестезіологія Біоетика, біобезпека Біологія Валеологія
Венерологія Відпочинок Вірусологія Гастроентерологія
Гематологія Гігієна Гомеопатія Дерматологія
Дієтологія Ендокринологія Епідеміологія Імунологія
Інфекційні хвороби Кардіологія Косметологія Мамологія
МНС Наркологія Невідкладна допомога Неврологія
Нетрадиційна медицина Нефрологія Онкологія Ортопедія
Отоларингологія Офтальмологія Педіатрія Перша допомога
Проктологія Пульмонологія Психіатрія Психологія
Радіологія Сексологія Стоматологія Терапія
Токсикологія Травматологія Шкідливі звички Урологія
Фармакологія Фізіологія Фізична культура Флебологія
Фтизіатрія Хірургія
Корисні лінки: Медичні книги | Медичні обстеження | Анатомія людини